Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 297(6): 101410, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34785214

RESUMEN

Pluripotent stem cells are known to shift their mitochondrial metabolism upon differentiation, but the mechanisms underlying such metabolic rewiring are not fully understood. We hypothesized that during differentiation of human induced pluripotent stem cells (hiPSCs), mitochondria undergo mitophagy and are then replenished by the biogenesis of new mitochondria adapted to the metabolic needs of the differentiated cell. To evaluate mitophagy during iPSC differentiation, we performed live cell imaging of mitochondria and lysosomes in hiPSCs differentiating into vascular endothelial cells using confocal microscopy. We observed a burst of mitophagy during the initial phases of hiPSC differentiation into the endothelial lineage, followed by subsequent mitochondrial biogenesis as assessed by the mitochondrial biogenesis biosensor MitoTimer. Furthermore, hiPSCs undergoing differentiation showed greater mitochondrial oxidation of fatty acids and an increase in ATP levels as assessed by an ATP biosensor. We also found that during mitophagy, the mitochondrial phosphatase PGAM5 is cleaved in hiPSC-derived endothelial progenitor cells and in turn activates ß-catenin-mediated transcription of the transcriptional coactivator PGC-1α, which upregulates mitochondrial biogenesis. These data suggest that mitophagy itself initiates the increase in mitochondrial biogenesis and oxidative metabolism through transcriptional changes during endothelial cell differentiation. In summary, these findings reveal a mitophagy-mediated mechanism for metabolic rewiring and maturation of differentiating cells via the ß-catenin signaling pathway. We propose that such mitochondrial-nuclear cross talk during hiPSC differentiation could be leveraged to enhance the metabolic maturation of differentiated cells.


Asunto(s)
Reprogramación Celular , Células Endoteliales , Células Madre Pluripotentes Inducidas/metabolismo , Mitofagia , Humanos , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Fosfoproteínas Fosfatasas/metabolismo , Transcripción Genética , beta Catenina/metabolismo
2.
Am J Physiol Cell Physiol ; 318(5): C913-C930, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32159364

RESUMEN

Whole exome sequencing (WES) was used in the research of familial pulmonary arterial hypertension (FPAH). CAV1 and KCNK3 were found as two novel candidate genes of FPAH. However, few pathogenic genes were identified in idiopathic pulmonary arterial hypertension (IPAH). We conducted WES in 20 unrelated IPAH patients who did not carry the known PAH-pathogenic variants among BMPR2, CAV1, KCNK3, SMAD9, ALK1, and ENG. We found a total of 4,950 variants in 3,534 genes, including 4,444 single-nucleotide polymorphisms and 506 insertions/deletions (InDels). Through the comprehensive and multilevel analysis, we disclosed several novel signaling cascades significantly connected to IPAH, including variants related to cadherin signaling pathway, dilated cardiomyopathy, glucose metabolism, immune response, mucin-type O-glycosylation, phospholipase C (PLC)-activating G protein-coupled receptor (GPCR) signaling pathway, vascular contraction and generation, and voltage-dependent Ca2+ channels. We also conducted validation studies in five mutant genes related to PLC-activating GPCR signaling pathway potentially involved in intracellular calcium regulation through Sanger sequencing for mutation accuracy, qRT-PCR for mRNA stability, immunofluorescence for subcellular localization, Western blotting for protein level, Fura-2 imaging for intracellular calcium, and proliferation analysis for cell function. The validation experiments showed that those variants in CCR5 and C3AR1 significantly increased the rise of intracellular calcium and the variant in CCR5 profoundly enhanced proliferative capacity of human pulmonary artery smooth muscle cells. Thus, our study suggests that multiple genetically affected signaling pathways take effect together to cause the formation of IPAH and the development of right heart failure and may further provide new therapy targets or putative clues for the present treatments such as limited therapeutic effectiveness of Ca2+ channel blockers.


Asunto(s)
Hipertensión Pulmonar Primaria Familiar/genética , Insuficiencia Cardíaca/genética , Receptores CCR5/genética , Receptores de Complemento/genética , Adulto , Bloqueadores de los Canales de Calcio/efectos adversos , Bloqueadores de los Canales de Calcio/uso terapéutico , Señalización del Calcio/genética , Caveolina 1/genética , Proliferación Celular/efectos de los fármacos , Hipertensión Pulmonar Primaria Familiar/tratamiento farmacológico , Hipertensión Pulmonar Primaria Familiar/patología , Femenino , Células HEK293 , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/patología , Humanos , Masculino , Persona de Mediana Edad , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Proteínas del Tejido Nervioso/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Transducción de Señal/genética , Secuenciación del Exoma
3.
Nat Commun ; 10(1): 2126, 2019 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-31073164

RESUMEN

Repair of the endothelial cell barrier after inflammatory injury is essential for tissue fluid homeostasis and normalizing leukocyte transmigration. However, the mechanisms of endothelial regeneration remain poorly understood. Here we show that the endothelial and hematopoietic developmental transcription factor Sox17 promotes endothelial regeneration in the endotoxemia model of endothelial injury. Genetic lineage tracing studies demonstrate that the native endothelium itself serves as the primary source of endothelial cells repopulating the vessel wall following injury. We identify Sox17 as a key regulator of endothelial cell regeneration using endothelial-specific deletion and overexpression of Sox17. Endotoxemia upregulates Hypoxia inducible factor 1α, which in turn transcriptionally activates Sox17 expression. We observe that Sox17 increases endothelial cell proliferation via upregulation of Cyclin E1. Furthermore, endothelial-specific upregulation of Sox17 in vivo enhances lung endothelial regeneration. We conclude that endotoxemia adaptively activates Sox17 expression to mediate Cyclin E1-dependent endothelial cell regeneration and restore vascular homeostasis.


Asunto(s)
Ciclina E/genética , Endotelio Vascular/fisiopatología , Endotoxemia/patología , Proteínas HMGB/metabolismo , Proteínas Oncogénicas/genética , Regeneración/inmunología , Factores de Transcripción SOXF/metabolismo , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Ciclina E/metabolismo , Modelos Animales de Enfermedad , Células Endoteliales/fisiología , Endotoxemia/inmunología , Células HEK293 , Proteínas HMGB/genética , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Oncogénicas/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción SOXF/genética , Transducción de Señal/fisiología , Regulación hacia Arriba
4.
Physiology (Bethesda) ; 33(5): 328-337, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30109825

RESUMEN

Hypoxia signaling in the vasculature controls vascular permeability, inflammation, vascular growth, and repair of vascular injury. In this review, we summarize recent insights in this burgeoning field and highlight the importance of studying the heterogeneity of hypoxia responses among individual patients, distinct vascular beds, and even individual vascular cells.


Asunto(s)
Células Endoteliales/fisiología , Homeostasis/fisiología , Hipoxia/fisiopatología , Transducción de Señal/fisiología , Animales , Permeabilidad Capilar/fisiología , Humanos
5.
Mol Biol Cell ; 28(9): 1177-1185, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28468941

RESUMEN

A heterozygous caveolin-1 c.474delA mutation has been identified in a family with heritable pulmonary arterial hypertension (PAH). This frameshift mutation leads to a caveolin-1 protein that contains all known functional domains but has a change in only the final 20 amino acids of the C-terminus. Here we studied how this mutation alters caveolin-1 function, using patient-derived fibroblasts. Transmission electron microscopy showed that fibroblasts carrying the c.474delA mutation form typical caveolae. Expression of mutated caveolin-1 in caveolin-1-null mouse fibroblasts failed to induce formation of caveolae due to retention of the mutated protein in the endoplasmic reticulum. However, coexpression of wild-type caveolin-1 with mutated caveolin-1 restored the ability to form caveolae. Importantly, fibroblasts carrying the mutation showed twofold increase in proliferation rate associated with hyperphosphorylation of Smad1/5/8. This mutation impaired the antiproliferative function of caveolin-1. Inhibition of type I TGFß receptors ALK1/2/3/6 responsible for phosphorylation of Smad1/5/8 reduced the hyperproliferation seen in c.474delA fibroblasts. These results demonstrate the critical role of the final 20 amino acids of caveolin-1 in modulating fibroblast proliferation by dampening Smad signaling and suggest that augmented Smad signaling and fibroblast hyperproliferation are contributing factors in the pathogenesis of PAH in patients with caveolin-1 c.474delA mutation.


Asunto(s)
Caveolina 1/genética , Caveolina 1/metabolismo , Hipertensión Pulmonar/metabolismo , Adenina , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Caveolas/metabolismo , Proliferación Celular/fisiología , Fibroblastos/metabolismo , Humanos , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/genética , Ratones , Microscopía Electrónica de Transmisión , Fosforilación , Cultivo Primario de Células , Eliminación de Secuencia/genética , Proteínas Smad Reguladas por Receptores/metabolismo
6.
Circulation ; 135(25): 2505-2523, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28381471

RESUMEN

BACKGROUND: The mechanisms underlying the dedifferentiation and lineage conversion of adult human fibroblasts into functional endothelial cells have not yet been fully defined. Furthermore, it is not known whether fibroblast dedifferentiation recapitulates the generation of multipotent progenitors during embryonic development, which give rise to endothelial and hematopoietic cell lineages. Here we established the role of the developmental transcription factor SOX17 in regulating the bilineage conversion of fibroblasts by the generation of intermediate progenitors. METHODS: CD34+ progenitors were generated after the dedifferentiation of human adult dermal fibroblasts by overexpression of pluripotency transcription factors. Sorted CD34+ cells were transdifferentiated into induced endothelial cells and induced erythroblasts using lineage-specific growth factors. The therapeutic potential of the generated cells was assessed in an experimental model of myocardial infarction. RESULTS: Induced endothelial cells expressed specific endothelial cell surface markers and also exhibited the capacity for cell proliferation and neovascularization. Induced erythroblasts expressed erythroid surface markers and formed erythroid colonies. Endothelial lineage conversion was dependent on the upregulation of the developmental transcription factor SOX17, whereas suppression of SOX17 instead directed the cells toward an erythroid fate. Implantation of these human bipotential CD34+ progenitors into nonobese diabetic/severe combined immunodeficiency (NOD-SCID) mice resulted in the formation of microvessels derived from human fibroblasts perfused with mouse and human erythrocytes. Endothelial cells generated from human fibroblasts also showed upregulation of telomerase. Cell implantation markedly improved vascularity and cardiac function after myocardial infarction without any evidence of teratoma formation. CONCLUSIONS: Dedifferentiation of fibroblasts to intermediate CD34+ progenitors gives rise to endothelial cells and erythroblasts in a SOX17-dependent manner. These findings identify the intermediate CD34+ progenitor state as a critical bifurcation point, which can be tuned to generate functional blood vessels or erythrocytes and salvage ischemic tissue.


Asunto(s)
Antígenos CD34/fisiología , Desdiferenciación Celular/fisiología , Células Endoteliales/fisiología , Eritroblastos/fisiología , Fibroblastos/fisiología , Factores de Transcripción SOXF/fisiología , Células Madre/fisiología , Animales , Células Cultivadas , Humanos , Recién Nacido , Ratones , Ratones Endogámicos NOD , Ratones SCID
7.
Mol Biol Cell ; 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28298490

RESUMEN

A heterozygous Caveolin-1 c.474delA mutation has been identified in a family with heritable pulmonary arterial hypertension (PAH). This frameshift mutation leads to caveolin-1 protein that contains all known functional domains but has a change only in the final 20 amino acids of the C terminus. Here we studied how this mutation alters caveolin-1 function using patient-derived fibroblasts. Transmission electron microscopy showed that fibroblasts carrying the c.474delA mutation formed typical caveolae. Expression of mutated caveolin-1 in caveolin-1-null mouse fibroblasts failed to induce formation of caveolae due to retention of the mutated protein in the endoplasmic reticulum. However, co-expression of wild type caveolin-1 with mutated caveolin-1 restored the ability to form caveolae. Importantly, fibroblasts carrying the mutation showed 2-fold increase in proliferation rate associated with hyper-phosphorylation of Smad1/5/8. This mutation impaired the anti-proliferative function of caveolin-1. Inhibition of type I TGFß receptors ALK1/2/3/6 responsible for phosphorylation of Smad1/5/8 reduced the hyper-proliferation seen in c.474delA fibroblasts. These results demonstrate the critical role of the final 20 amino acids of caveolin-1 in modulating fibroblast proliferation through dampening Smad signaling, and suggest that augmented Smad signaling and fibroblast hyper-proliferation are contributing factors in the pathogenesis of PAH in patients with caveolin-1 c.474delA mutation.

9.
Cell Rep ; 16(2): 323-332, 2016 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-27346346

RESUMEN

The molecular mechanisms underlying the regulation of pluripotency by cellular metabolism in human embryonic stem cells (hESCs) are not fully understood. We found that high levels of glutamine metabolism are essential to prevent degradation of OCT4, a key transcription factor regulating hESC pluripotency. Glutamine withdrawal depletes the endogenous antioxidant glutathione (GSH), which results in the oxidation of OCT4 cysteine residues required for its DNA binding and enhanced OCT4 degradation. The emergence of the OCT4(lo) cell population following glutamine withdrawal did not result in greater propensity for cell death. Instead, glutamine withdrawal during vascular differentiation of hESCs generated cells with greater angiogenic capacity, thus indicating that modulating glutamine metabolism enhances the differentiation and functional maturation of cells. These findings demonstrate that the pluripotency transcription factor OCT4 can serve as a metabolic-redox sensor in hESCs and that metabolic cues can act in concert with growth factor signaling to orchestrate stem cell differentiation.


Asunto(s)
Glutamina/metabolismo , Células Madre Embrionarias Humanas/fisiología , Factor 3 de Transcripción de Unión a Octámeros/fisiología , Diferenciación Celular , Células Cultivadas , Cisteína/química , ADN/química , Células Endoteliales/fisiología , Glutatión/metabolismo , Humanos , Neovascularización Fisiológica , Factor 3 de Transcripción de Unión a Octámeros/química , Unión Proteica , Proteolisis , Especies Reactivas de Oxígeno/metabolismo
10.
Sci Rep ; 6: 25357, 2016 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-27150457

RESUMEN

Oxygen-sensing pathways executed by the hypoxia-inducible factors (HIFs) induce a cellular adaptive program when oxygen supply becomes limited. However, the role of the HIF oxygen-sensing pathway in the airway response to hypoxic stress in adulthood remains poorly understood. Here we found that in vivo exposure to hypoxia led to a profound increase in bronchial epithelial cell proliferation mainly confined to Club (Clara) cells. Interestingly, this response was executed by hypoxia-inducible factor 2α (HIF2α), which controls the expression of FoxM1, a recognized proliferative factor of Club cells. Furthermore, HIF2α induced the expression of the resistin-like molecules α and ß (RELMα and ß), previously considered bronchial epithelial growth factors. Importantly, despite the central role of HIF2α, this proliferative response was not initiated by in vivo Vhl gene inactivation or pharmacological inhibition of prolyl hydroxylase oxygen sensors, indicating the molecular complexity of this response and the possible participation of other oxygen-sensing pathways. Club cells are principally involved in protection and maintenance of bronchial epithelium. Thus, our findings identify a novel molecular link between HIF2α and Club cell biology that can be regarded as a new HIF2α-dependent mechanism involved in bronchial epithelium adaptation to oxygen fluctuations.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Bronquios/citología , Oxígeno/metabolismo , Animales , Bronquios/metabolismo , Hipoxia de la Célula , Proliferación Celular , Células Cultivadas , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteína Forkhead Box M1/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Transducción de Señal , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
11.
Pulm Circ ; 4(3): 387-94, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25621152

RESUMEN

Two defining characteristics of stem cells are their multilineage differentiation potential (multipotency or pluripotency) and their capacity for self-renewal. Growth factors are well-established regulators of stem cell differentiation and self renewal, but less is known about the influence of the metabolic state on stem cell function. Recent studies investigating cellular metabolism during the differentiation of adult stem cells, human embryonic stem cells (ESCs), and induced pluripotent stem cells have demonstrated that activation of specific metabolic pathways depends on the type of stem cells as well as the lineage cells are differentiating into and that these metabolic pathways can influence the differentiation process. However, some common patterns have emerged, suggesting that undifferentiated stem cells primarily rely on glycolysis to meet energy demands. Our own data indicate that undifferentiated ESCs not only exhibit a low mitochondrial membrane potential but also express high levels of the mitochondrial uncoupling protein 2 and of glutamine metabolism regulators when compared with differentiated cells. More importantly, interventions that target stem cell metabolism are able to either prevent or enhance differentiation. These findings suggest that the metabolic state of stem cells is not just a marker of their differentiation status but also plays an active role in regulating stem cell function. Regulatory metabolic pathways in stem cells may thus serve as important checkpoints that can be modulated to direct the regenerative capacity of stem cells.

12.
PLoS One ; 8(10): e77077, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24204740

RESUMEN

Human mesenchymal stem cells (MSCs) are adult multipotent stem cells which can be isolated from bone marrow, adipose tissue as well as other tissues and have the capacity to differentiate into a variety of mesenchymal cell types such as adipocytes, osteoblasts and chondrocytes. Differentiation of stem cells into mature cell types is guided by growth factors and hormones, but recent studies suggest that metabolic shifts occur during differentiation and can modulate the differentiation process. We therefore investigated mitochondrial biogenesis, mitochondrial respiration and the mitochondrial membrane potential during adipogenic differentiation of human MSCs. In addition, we inhibited mitochondrial function to assess its effects on adipogenic differentiation. Our data show that mitochondrial biogenesis and oxygen consumption increase markedly during adipogenic differentiation, and that reducing mitochondrial respiration by hypoxia or by inhibition of the mitochondrial electron transport chain significantly suppresses adipogenic differentiation. Furthermore, we used a novel approach to suppress mitochondrial activity using a specific siRNA-based knockdown of the mitochondrial transcription factor A (TFAM), which also resulted in an inhibition of adipogenic differentiation. Taken together, our data demonstrates that increased mitochondrial activity is a prerequisite for MSC differentiation into adipocytes. These findings suggest that metabolic modulation of adult stem cells can maintain stem cell pluripotency or direct adult stem cell differentiation.


Asunto(s)
Adipocitos/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Mitocondrias/metabolismo , Consumo de Oxígeno , Adipocitos/citología , Adipogénesis , Adulto , Hipoxia de la Célula , Respiración de la Célula , Células Cultivadas , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Expresión Génica , Humanos , Immunoblotting , Potencial de la Membrana Mitocondrial , Células Madre Mesenquimatosas/citología , Microscopía Confocal , Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Handb Exp Pharmacol ; 218: 105-49, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24092338

RESUMEN

World Health Organization category 1 pulmonary hypertension (PH) is a heterogeneous syndrome in which PH originates in the small pulmonary arteries and is therefore also referred to as pulmonary arterial hypertension (PAH). Common pathophysiologic features include endothelial dysfunction, excessive proliferation and impaired apoptosis of vascular cells, and mitochondrial fragmentation. The proliferation/apoptosis imbalance relates in part to activation of the transcription factors hypoxia-inducible factor-1α (HIF-1α) and nuclear factor of activated T-cells (NFAT) and apoptosis repressors, such as survivin. Perivascular inflammation, disruption of adventitial connective tissue, and a glycolytic metabolic shift in vascular cells and right ventricular myocytes also occur in PAH. There are important genetic and epigenetic predispositions to PAH. This review assesses the fidelity of existing animal models to human PAH. No single model can perfectly recapitulate the many diverse forms of PH in Category 1; however, acceptable models exist. PAH induced by monocrotaline and chronic hypoxia plus SU-5416 (CH+SU) in rats display endothelial dysfunction, proliferation/apoptosis imbalance, and develop the glycolytic metabolic profile of human PAH. Histologically, CH+SU best conforms to PAH in that it develops complex vascular lesions, including plexiform lesions. However, the monocrotaline model can be induced to manifest complex vascular lesions and does manifest the tendency of PAH patients to die of right ventricular (RV) failure. Murine models offer greater molecular certainty than rat models but rarely develop significant PH, have less right ventricular hypertrophy (RVH) and pulmonary artery (PA) remodeling, and are harder to image and catheterize. The use of high fidelity catheterization and advanced imaging (microPET-CT, high frequency echocardiography, high field strength MRI) and functional testing (treadmill) permit accurate phenotyping of experimental models of PAH. Preclinical trial design is an important aspect of testing experimental PAH therapies. The use of multiple complementary models with adequate sample size and trial duration and appropriate endpoints are required for preclinical assessment of experimental PAH therapies.


Asunto(s)
Modelos Animales de Enfermedad , Hipertensión Pulmonar/etiología , Animales , Ecocardiografía , Hemodinámica , Humanos , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/terapia , Ratones , Ratas
14.
J Mol Cell Cardiol ; 64: 124-31, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24090675

RESUMEN

Successful implantation and long-term survival of engineered tissue grafts hinges on adequate vascularization of the implant. Endothelial cells are essential for patterning vascular structures, but they require supportive mural cells such as pericytes/mesenchymal stem cells (MSCs) to generate stable, functional blood vessels. While there is evidence that the angiogenic effect of MSCs is mediated via the secretion of paracrine signals, the identity of these signals is unknown. By utilizing two functionally distinct human MSC clones, we found that so-called "pericytic" MSCs secrete the pro-angiogenic vascular guidance molecule SLIT3, which guides vascular development by directing ROBO4-positive endothelial cells to form networks in engineered tissue. In contrast, "non-pericytic" MSCs exhibit reduced activation of the SLIT3/ROBO4 pathway and do not support vascular networks. Using live cell imaging of organizing 3D vascular networks, we show that siRNA knockdown of SLIT3 in MSCs leads to disorganized clustering of ECs. Knockdown of its receptor ROBO4 in ECs abolishes the generation of functional human blood vessels in an in vivo xenogenic implant. These data suggest that the SLIT3/ROBO4 pathway is required for MSC-guided vascularization in engineered tissues. Heterogeneity of SLIT3 expression may underlie the variable clinical success of MSCs for tissue repair applications.


Asunto(s)
Proteínas de la Membrana/genética , Neovascularización Fisiológica/genética , Receptores de Superficie Celular/genética , Ingeniería de Tejidos , Activación Transcripcional , Animales , Comunicación Celular , Movimiento Celular , Análisis por Conglomerados , Células Endoteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Proteínas de la Membrana/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones , Pericitos/citología , Pericitos/metabolismo , Fenotipo , Interferencia de ARN , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Andamios del Tejido
15.
Am J Respir Crit Care Med ; 187(8): 865-78, 2013 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-23449689

RESUMEN

RATIONALE: Pulmonary arterial hypertension (PAH) is a lethal, female-predominant, vascular disease. Pathologic changes in PA smooth muscle cells (PASMC) include excessive proliferation, apoptosis-resistance, and mitochondrial fragmentation. Activation of dynamin-related protein increases mitotic fission and promotes this proliferation-apoptosis imbalance. The contribution of decreased fusion and reduced mitofusin-2 (MFN2) expression to PAH is unknown. OBJECTIVES: We hypothesize that decreased MFN2 expression promotes mitochondrial fragmentation, increases proliferation, and impairs apoptosis. The role of MFN2's transcriptional coactivator, peroxisome proliferator-activated receptor γ coactivator 1-α (PGC1α), was assessed. MFN2 therapy was tested in PAH PASMC and in models of PAH. METHODS: Fusion and fission mediators were measured in lungs and PASMC from patients with PAH and female rats with monocrotaline or chronic hypoxia+Sugen-5416 (CH+SU) PAH. The effects of adenoviral mitofusin-2 (Ad-MFN2) overexpression were measured in vitro and in vivo. MEASUREMENTS AND MAIN RESULTS: In normal PASMC, siMFN2 reduced expression of MFN2 and PGC1α; conversely, siPGC1α reduced PGC1α and MFN2 expression. Both interventions caused mitochondrial fragmentation. siMFN2 increased proliferation. In rodent and human PAH PASMC, MFN2 and PGC1α were decreased and mitochondria were fragmented. Ad-MFN2 increased fusion, reduced proliferation, and increased apoptosis in human PAH and CH+SU. In CH+SU, Ad-MFN2 improved walking distance (381 ± 35 vs. 245 ± 39 m; P < 0.05); decreased pulmonary vascular resistance (0.18 ± 0.02 vs. 0.38 ± 0.14 mm Hg/ml/min; P < 0.05); and decreased PA medial thickness (14.5 ± 0.8 vs. 19 ± 1.7%; P < 0.05). Lung vascularity was increased by MFN2. CONCLUSIONS: Decreased expression of MFN2 and PGC1α contribute to mitochondrial fragmentation and a proliferation-apoptosis imbalance in human and experimental PAH. Augmenting MFN2 has therapeutic benefit in human and experimental PAH.


Asunto(s)
GTP Fosfohidrolasas/deficiencia , Proteínas de Choque Térmico/deficiencia , Hipertensión Pulmonar/fisiopatología , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/deficiencia , Factores de Transcripción/deficiencia , Animales , Apoptosis/fisiología , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Tolerancia al Ejercicio/efectos de los fármacos , Hipertensión Pulmonar Primaria Familiar , Femenino , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Pulmón/citología , Pulmón/patología , Proteínas de la Membrana/administración & dosificación , Proteínas de la Membrana/deficiencia , Dinámicas Mitocondriales/genética , Proteínas Mitocondriales/administración & dosificación , Miocitos del Músculo Liso/patología , Miocitos del Músculo Liso/fisiología , Atrofia Óptica Autosómica Dominante/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Ratas , Ratas Sprague-Dawley
16.
Circ Res ; 112(5): 802-15, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23334860

RESUMEN

RATIONALE: Closure of the ductus arteriosus (DA) is essential for the transition from fetal to neonatal patterns of circulation. Initial PO2-dependent vasoconstriction causes functional DA closure within minutes. Within days a fibrogenic, proliferative mechanism causes anatomic closure. Though modulated by endothelial-derived vasodilators and constrictors, O2 sensing is intrinsic to ductal smooth muscle cells and oxygen-induced DA constriction persists in the absence of endothelium, endothelin, and cyclooxygenase mediators. O2 increases mitochondrial-derived H2O2, which constricts ductal smooth muscle cells by raising intracellular calcium and activating rho kinase. However, the mechanism by which oxygen changes mitochondrial function is unknown. OBJECTIVE: The purpose of this study was to determine whether mitochondrial fission is crucial for O2-induced DA constriction and closure. METHODS AND RESULTS: Using DA harvested from 30 term infants during correction of congenital heart disease, as well as DA from term rabbits, we demonstrate that mitochondrial fission is crucial for O2-induced constriction and closure. O2 rapidly (<5 minutes) causes mitochondrial fission by a cyclin-dependent kinase- mediated phosphorylation of dynamin-related protein 1 (Drp1) at serine 616. Fission triggers a metabolic shift in the ductal smooth muscle cells that activates pyruvate dehydrogenase and increases mitochondrial H2O2 production. Subsequently, fission increases complex I activity. Mitochondrial-targeted catalase overexpression eliminates PO2-induced increases in mitochondrial-derived H2O2 and cytosolic calcium. The small molecule Drp1 inhibitor, Mdivi-1, and siDRP1 yield concordant results, inhibiting O2-induced constriction (without altering the response to phenylephrine or KCl) and preventing O2-induced increases in oxidative metabolism, cytosolic calcium, and ductal smooth muscle cells proliferation. Prolonged Drp1 inhibition reduces DA closure in a tissue culture model. CONCLUSIONS: Mitochondrial fission is an obligatory, early step in mammalian O2 sensing and offers a promising target for modulating DA patency.


Asunto(s)
Conducto Arterial/fisiología , GTP Fosfohidrolasas/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Dinámicas Mitocondriales/fisiología , Proteínas Mitocondriales/fisiología , Músculo Liso Vascular/fisiología , Oxígeno/fisiología , Vasoconstricción/fisiología , Animales , Animales Recién Nacidos , Calcio/metabolismo , Proliferación Celular , Células Cultivadas , Conducto Arterial/citología , Dinaminas , Femenino , Humanos , Peróxido de Hidrógeno/metabolismo , Recién Nacido , Masculino , Mitocondrias/metabolismo , Modelos Animales , Músculo Liso Vascular/citología , Consumo de Oxígeno/fisiología , Conejos , Técnicas de Cultivo de Tejidos , Quinasas Asociadas a rho/metabolismo
17.
Mol Cell ; 48(5): 681-91, 2012 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-23103253

RESUMEN

The mammalian target of rapamycin (mTOR) pathway, which is essential for cell proliferation, is repressed in certain cell types in hypoxia. However, hypoxia-inducible factor 2α (HIF2α) can act as a proliferation-promoting factor in some biological settings. This paradoxical situation led us to study whether HIF2α has a specific effect on mTORC1 regulation. Here we show that activation of the HIF2α pathway increases mTORC1 activity by upregulating expression of the amino acid carrier SLC7A5. At the molecular level we also show that HIF2α binds to the Slc7a5 proximal promoter. Our findings identify a link between the oxygen-sensing HIF2α pathway and mTORC1 regulation, revealing the molecular basis of the tumor-promoting properties of HIF2α in von Hippel-Lindau-deficient cells. We also describe relevant physiological scenarios, including those that occur in liver and lung tissue, wherein HIF2α or low-oxygen tension drive mTORC1 activity and SLC7A5 expression.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Proteínas/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sitios de Unión , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Hipoxia de la Célula , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Transportador de Aminoácidos Neutros Grandes 1/genética , Hígado/metabolismo , Pulmón/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Ratones SCID , Complejos Multiproteicos , Trasplante de Neoplasias , Regiones Promotoras Genéticas , Proteínas/genética , Interferencia de ARN , Transducción de Señal , Serina-Treonina Quinasas TOR , Factores de Tiempo , Transfección , Carga Tumoral , Regulación hacia Arriba , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/genética , Proteína Supresora de Tumores del Síndrome de Von Hippel-Lindau/metabolismo
18.
Mol Cell Biol ; 32(13): 2570-84, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22547685

RESUMEN

BNip3 localizes to the outer mitochondrial membrane, where it functions in mitophagy and mitochondrial dynamics. While the BNip3 protein is constitutively expressed in adult liver from fed mice, we have shown that its expression is superinduced by fasting of mice, consistent with a role in responses to nutrient deprivation. Loss of BNip3 resulted in increased lipid synthesis in the liver that was associated with elevated ATP levels, reduced AMP-regulated kinase (AMPK) activity, and increased expression of lipogenic enzymes. Conversely, there was reduced ß-oxidation of fatty acids in BNip3 null liver and also defective glucose output under fasting conditions. These metabolic defects in BNip3 null liver were linked to increased mitochondrial mass and increased hepatocellular respiration in the presence of glucose. However, despite elevated mitochondrial mass, an increased proportion of mitochondria exhibited loss of mitochondrial membrane potential, abnormal structure, and reduced oxygen consumption. Elevated reactive oxygen species, inflammation, and features of steatohepatitis were also observed in the livers of BNip3 null mice. These results identify a role for BNip3 in limiting mitochondrial mass and maintaining mitochondrial integrity in the liver that has consequences for lipid metabolism and disease.


Asunto(s)
Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Mitocondrias Hepáticas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Ayuno/metabolismo , Ácidos Grasos/metabolismo , Hígado Graso/etiología , Hígado Graso/metabolismo , Gluconeogénesis , Glucosa/metabolismo , Lipogénesis , Masculino , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Modelos Biológicos , Oxidación-Reducción , Consumo de Oxígeno
19.
Circ Res ; 110(11): 1484-97, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22511751

RESUMEN

RATIONALE: Pulmonary arterial hypertension (PAH) is a lethal syndrome characterized by pulmonary vascular obstruction caused, in part, by pulmonary artery smooth muscle cell (PASMC) hyperproliferation. Mitochondrial fragmentation and normoxic activation of hypoxia-inducible factor-1α (HIF-1α) have been observed in PAH PASMCs; however, their relationship and relevance to the development of PAH are unknown. Dynamin-related protein-1 (DRP1) is a GTPase that, when activated by kinases that phosphorylate serine 616, causes mitochondrial fission. It is, however, unknown whether mitochondrial fission is a prerequisite for proliferation. OBJECTIVE: We hypothesize that DRP1 activation is responsible for increased mitochondrial fission in PAH PASMCs and that DRP1 inhibition may slow proliferation and have therapeutic potential. METHODS AND RESULTS: Experiments were conducted using human control and PAH lungs (n=5) and PASMCs in culture. Parallel experiments were performed in rat lung sections and PASMCs and in rodent PAH models induced by the HIF-1α activator, cobalt, chronic hypoxia, and monocrotaline. HIF-1α activation in human PAH leads to mitochondrial fission by cyclin B1/CDK1-dependent phosphorylation of DRP1 at serine 616. In normal PASMCs, HIF-1α activation by CoCl(2) or desferrioxamine causes DRP1-mediated fission. HIF-1α inhibition reduces DRP1 activation, prevents fission, and reduces PASMC proliferation. Both the DRP1 inhibitor Mdivi-1 and siDRP1 prevent mitotic fission and arrest PAH PASMCs at the G2/M interphase. Mdivi-1 is antiproliferative in human PAH PASMCs and in rodent models. Mdivi-1 improves exercise capacity, right ventricular function, and hemodynamics in experimental PAH. CONCLUSIONS: DRP-1-mediated mitotic fission is a cell-cycle checkpoint that can be therapeutically targeted in hyperproliferative disorders such as PAH.


Asunto(s)
Proliferación Celular , Dinaminas/metabolismo , GTP Fosfohidrolasas/metabolismo , Hipertensión Pulmonar/enzimología , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias Musculares/enzimología , Proteínas Mitocondriales/metabolismo , Mitosis , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Animales , Antihipertensivos/farmacología , Proteína Quinasa CDC2/metabolismo , Estudios de Casos y Controles , Puntos de Control del Ciclo Celular , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Cobalto , Ciclina B1/metabolismo , Modelos Animales de Enfermedad , Dinaminas/genética , Activación Enzimática , Hipertensión Pulmonar Primaria Familiar , GTP Fosfohidrolasas/genética , Terapia Genética/métodos , Glucólisis , Humanos , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/patología , Hipertensión Pulmonar/terapia , Hipoxia/complicaciones , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/patología , Proteínas Mitocondriales/genética , Mitosis/efectos de los fármacos , Monocrotalina , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Fosforilación , Arteria Pulmonar/enzimología , Arteria Pulmonar/patología , Quinazolinonas/farmacología , Interferencia de ARN , Ratas , Ratas Sprague-Dawley , Serina , Factores de Tiempo , Transfección
20.
FASEB J ; 26(5): 2175-86, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22321727

RESUMEN

Mitochondria exist in dynamic networks that undergo fusion and fission. Mitochondrial fusion and fission are mediated by several GTPases in the outer mitochondrial membrane, notably mitofusin-2 (Mfn-2), which promotes fusion, and dynamin-related protein (Drp-1), which promotes fission. We report that human lung cancer cell lines exhibit an imbalance of Drp-1/Mfn-2 expression, which promotes a state of mitochondrial fission. Lung tumor tissue samples from patients demonstrated a similar increase in Drp-1 and decrease in Mfn-2 when compared to adjacent healthy lung. Complementary approaches to restore mitochondrial network formation in lung cancer cells by overexpression of Mfn-2, Drp-1 inhibition, or Drp-1 knockdown resulted in a marked reduction of cancer cell proliferation and an increase in spontaneous apoptosis. The number of cancer cells in S phase decreased from 32.4 ± 0.6 to 6.4 ± 0.3% with Drp-1 inhibition (P<0.001). In a xenotransplantation model, Mfn-2 gene therapy or Drp-1 inhibition could regress tumor growth. The tumor volume decreased from 205.6 ± 59 to 70.6 ± 15 mm(3) (P<0.05) with Mfn-2 overexpression and from 186.0 ± 19 to 87.0 ± 6 mm(3) (P<0.01) with therapeutic Drp-1 inhibition. Impaired fusion and enhanced fission contribute fundamentally to the proliferation/apoptosis imbalance in cancer and constitute promising novel therapeutic targets.


Asunto(s)
Ciclo Celular , Neoplasias Pulmonares/patología , Mitocondrias/fisiología , Animales , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Humanos , Ratones , Ratones Desnudos , Tomografía de Emisión de Positrones , Reacción en Cadena en Tiempo Real de la Polimerasa , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...